--- file_format: mystnb kernelspec: name: python3 display_name: python3 myst: substitutions: MeasurementControl: "{class}`~quantify_core.measurement.control.MeasurementControl`" ConditionalReset: "{class}`~quantify_scheduler.backends.qblox.operations.gate_library.ConditionalReset`" QuantumDevice: "{class}`~quantify_scheduler.device_under_test.quantum_device.QuantumDevice`" Measure: "{class}`~quantify_scheduler.operations.gate_library.Measure`" Reset: "{class}`~quantify_scheduler.operations.gate_library.Reset`" Schedule: "{class}`~quantify_scheduler.schedules.schedule.Schedule`" t1_sched: "{class}`~quantify_scheduler.schedules.timedomain_schedules.t1_sched`" readout_calibration_sched: "{class}`~quantify_scheduler.schedules.timedomain_schedules.readout_calibration_sched`" ReadoutCalibrationAnalysis: "{class}`~quantify_core.analysis.readout_calibration_analysis.ReadoutCalibrationAnalysis`" ScheduleGettable: "{class}`~quantify_scheduler.gettables.ScheduleGettable`" BasicTransmonElement: "{class}`~quantify_scheduler.device_under_test.transmon_element.BasicTransmonElement`" Cluster: "{class}`~qblox_instruments.Cluster`" ThresholdedAcquisition: "{class}`~quantify_scheduler.operations.acquisition_library.ThresholdedAcquisition`" RuntimeError: "{class}`~RuntimeError`" T1Analysis: "{class}`~quantify_core.analysis.single_qubit_timedomain.T1Analysis`" --- (sec-tutorial-conditional-reset)= ```{seealso} The complete source code of this tutorial can be found in {nb-download}`Conditional Reset.ipynb` ``` # Tutorial: Conditional Reset In this tutorial, we show how to perform a conditional reset using the [conditional control flow framework](sec-control-flow). A conditional reset consists of measuring the state of a qubit, and then: - sending a pulse to rotate the qubit to the ground state in case the qubit is found to be in an excited state - not sending any pulse if the qubit is found to be in the ground state This conditional reset is potentially much faster than an idle qubit reset (i.e. waiting for a time {math}`\gg \tau_1`). Quantify discriminates between excited and ground state at the `Measure` operation using a [thresholded acquisition](thresholded_acquisition_explanation), and uses a default {math}`\pi` pulse to set the qubit to its ground state. In this tutorial, we demonstrate conditional reset using a Qblox cluster that contains a readout module (`QRM_RF`), responsible for the measurement of the qubit, and a control module (`QCM_RF`), responsible for conditionally sending out the {math}`\pi` pulse. To run a conditional reset, we perform the following steps: 1. Set up the quantum device, dummy hardware, and hardware configuration. 2. Configure thresholded acquisition parameters to separate the {math}`|0\rangle` and {math}`|1\rangle` states. 3. Verify that these parameters are set correctly. 4. Run a conditional reset. ```{note} Currently, the conditional reset is only implemented for the Qblox hardware. ``` (cond_reset_initial_setup)= ## Initial Setup We follow here the same setup as in the {ref}`sec-tutorial-experiment` tutorial. First, we define a single transmon qubit as an element ({{ BasicTransmonElement }}) of the {{ QuantumDevice }} and populate the parameters with some reasonable values: ```{seealso} If you want to learn more about how to set up the {{ QuantumDevice }} and hardware configuration, please see our other tutorials, in particular {ref}`sec-tutorial-experiment` and {ref}`sec-tutorial-compiling`. ``` ```{code-cell} ipython3 --- tags: [remove-cell] --- """Disable transparent backgrounds for analysis figures to make them look nicer in both dark and bright mode on the website.""" from quantify_core.analysis import base_analysis as ba ba.settings["mpl_transparent_background"] = False ``` ```{code-cell} ipython3 --- tags: [hide-cell] --- from qblox_instruments import Cluster, ClusterType import tempfile from quantify_core.data import handling as dh from quantify_core.measurement.control import MeasurementControl from quantify_scheduler import BasicTransmonElement, InstrumentCoordinator, QuantumDevice from quantify_scheduler.qblox import ClusterComponent measurement_control = MeasurementControl("measurement_control") instrument_coordinator = InstrumentCoordinator("instrument_coordinator") # Create a temporary directory for this tutorial temp_dir = tempfile.mkdtemp() # First, don't forget to set the data directory! dh.set_datadir(temp_dir) # Device parameters ACQ_DELAY = 100e-9 FREQ_01 = 4e9 READOUT_AMP = 0.1 READOUT_FREQ = 4.3e9 PI_PULSE_AMP = 0.15 LO_FREQ_QUBIT = 3.9e9 LO_FREQ_READOUT = 4.5e9 single_qubit_device = QuantumDevice("single_qubit_device") q0 = BasicTransmonElement("q0") single_qubit_device.add_element(q0) # Assign device parameters to transmon element q0.measure.pulse_amp(READOUT_AMP) q0.clock_freqs.readout(READOUT_FREQ) q0.clock_freqs.f01(FREQ_01) q0.measure.acq_delay(ACQ_DELAY) q0.rxy.amp180(PI_PULSE_AMP) ``` Next, we connect to a dummy {{ Cluster }}. If you are connecting to an actual cluster, you would provide the `identifier` argument (the IP address, device name or serial number) instead of the `dummy_cfg` argument. ```{code-cell} ipython3 --- tags: [hide-cell] --- cluster = Cluster( "cluster", dummy_cfg={ 1: ClusterType.CLUSTER_QRM_RF, 2: ClusterType.CLUSTER_QCM_RF, }, ) ic_cluster = ClusterComponent(cluster) instrument_coordinator.add_component(ic_cluster) single_qubit_device.instr_instrument_coordinator(instrument_coordinator.name) ``` Finally, we define the hardware configuration: ```{code-cell} ipython3 --- tags: [hide-cell] --- hardware_cfg = { "version": "0.2", "config_type": "quantify_scheduler.backends.qblox_backend.QbloxHardwareCompilationConfig", "hardware_description": { f"{cluster.name}": { "instrument_type": "Cluster", "modules": { 1: {"instrument_type": "QRM_RF"}, 2: {"instrument_type": "QCM_RF"}, }, "ref": "internal", } }, "hardware_options": { "modulation_frequencies": { "q0:res-q0.ro": {"lo_freq": LO_FREQ_READOUT}, "q0:mw-q0.01": {"lo_freq": LO_FREQ_QUBIT}, } }, "connectivity": { "graph": [ (f"{cluster.name}.module1.complex_output_0", "q0:res"), (f"{cluster.name}.module1.complex_input_0", "q0:res"), (f"{cluster.name}.module2.complex_output_0", "q0:mw"), ] }, } single_qubit_device.hardware_config(hardware_cfg) ``` (cond_reset_create_schedule)= ## Readout Calibration To discriminate between the ground state and the excited state with {{ ConditionalReset }}, we first need to configure the {{ ThresholdedAcquisition }} parameters `acq_threshold` and `acq_rotation` (see [Tutorial: Acquisitions](thresholded_acquisition_explanation)). We do so by preparing a qubit in either its ground state or its excited state, performing a measurement, and repeating this process 500 times. In the measured IQ plane we expect to find all data points clustered in two distinct groups that correspond to the two different states, and the `acq_threshold` and `acq_rotation` parameters define the line between the two groups. We run this calibration using {{ MeasurementControl }} and a predefined {{ Schedule }} called {{ readout_calibration_sched }}: ```{code-cell} ipython3 --- tags: [remove-cell] --- ### Generate dummy data import numpy as np from qblox_instruments.ieee488_2.dummy_transport import DummyBinnedAcquisitionData from quantify_scheduler.qblox import start_dummy_cluster_armed_sequencers def get_dummy_binned_acquisition_data( real: float, imag: float, theta: float, threshold: float ): angle = 2 * np.pi * theta / (360) threshold *= 1000 # different normalization (integration length) on qblox instruments if real * np.cos(angle) + imag * np.sin(angle) > -threshold: thres = 0 else: thres = 1 return DummyBinnedAcquisitionData(data=(real, imag), thres=thres, avg_cnt=0) # Means and standard deviations x0, xs0 = -2.7, 2.5 y0, ys0 = 2.9, 2.5 x1, xs1 = -14, 2.5 y1, ys1 = 1.9, 2.5 # Number of points per data cluster n_points = 500 # Generate random samples x0_samples = np.random.normal(x0, xs0, n_points) y0_samples = np.random.normal(y0, ys0, n_points) x1_samples = np.random.normal(x1, xs1, n_points) y1_samples = np.random.normal(y1, ys1, n_points) # interleave the random samples such that we get # x = [x0_samples[0], x1_samples[0], x0_samples[1],...] # y = [y0_samples[0], y1_samples[0], y0_samples[1],...] x = np.vstack((x0_samples, x1_samples)).reshape(-1, order="F") y = np.vstack((y0_samples, y1_samples)).reshape(-1, order="F") states = np.array([0, 1] * 500) # prepare cluster with dummy data that will be returned # after retrieving acquisitions. cluster.delete_dummy_binned_acquisition_data(1) cluster.set_dummy_binned_acquisition_data( slot_idx=1, sequencer=0, acq_index_name="0", data=[ get_dummy_binned_acquisition_data(float(re), float(im), 0, 0) for re, im in zip(x, y) ], ) cluster.start_sequencer = lambda: start_dummy_cluster_armed_sequencers(ic_cluster) ``` ```{code-cell} ipython3 import numpy as np from qcodes import ManualParameter from quantify_scheduler import Schedule, ScheduleGettable from quantify_scheduler.operations import Measure from quantify_scheduler.schedules import readout_calibration_sched single_qubit_device.cfg_sched_repetitions(1) states = ManualParameter(name="States", unit="", label="") states.batched = True prepared_states = np.asarray([0, 1] * 500) readout_calibration_kwargs = {"qubit": "q0", "prepared_states": prepared_states} gettable = ScheduleGettable( single_qubit_device, schedule_function=readout_calibration_sched, schedule_kwargs=readout_calibration_kwargs, real_imag=True, batched=True, max_batch_size=200, ) measurement_control.settables(states) measurement_control.setpoints(prepared_states) measurement_control.gettables(gettable) measurement_control.verbose(False) dataset = measurement_control.run("Readout Calibration") dataset ``` ```{seealso} More information on configuring {{ MeasurementControl }} can be found in the [user guide](https://quantify-os.org/docs/quantify-core/dev/user/concepts.html#measurement-control) of `quantify-core`, and in the tutorials [Running and Experiment](sec-tutorial-experiment) and [ScheduleGettable](sec-schedulegettable-2dsweep-usage) ``` To determine the qubit threshold parameters, we use the {{ ReadoutCalibrationAnalysis }}: ```{code-cell} ipython3 from quantify_core.analysis.readout_calibration_analysis import ( ReadoutCalibrationAnalysis, ) analysis = ReadoutCalibrationAnalysis(dataset) analysis.run() analysis.display_figs_mpl() ``` The image above shows that the measured IQ points are clustered in two groups as expected. We can now fit a line between the two groups and from there obtain the `acq_threshold` and the `acq_rotation` parameters, that we add to the qubit configuration: ```{code-cell} ipython3 import numpy as np fit_results = analysis.fit_results["linear_discriminator"].params acq_threshold = fit_results["acq_threshold"].value acq_rotation = (np.rad2deg(fit_results["acq_rotation_rad"].value)) % 360 q0.measure.acq_threshold(acq_threshold) q0.measure.acq_rotation(acq_rotation) ``` ## Verifying parameters We can quickly verify that the qubit parameters are set correctly by running again the {{ readout_calibration_sched }} schedule with `"ThresholdedAcquisition"` as acquisition protocol. If the calibration was done correctly, we expect that when the state is prepared in the {math}`|0\rangle` state or {math}`|1\rangle` state, the thresholded acquisition will return 0 or 1 respectively. The results are then verified using a confusion matrix: ```{code-cell} ipython3 --- tags: [remove-cell] --- cluster.delete_dummy_binned_acquisition_data(1) cluster.set_dummy_binned_acquisition_data( slot_idx=1, sequencer=0, acq_index_name="0", data=[ get_dummy_binned_acquisition_data( float(re), float(im), acq_rotation, acq_threshold ) for re, im in zip(x, y) ], ) cluster.start_sequencer = lambda: start_dummy_cluster_armed_sequencers(ic_cluster) ``` ```{code-cell} ipython3 from sklearn.metrics import ConfusionMatrixDisplay import matplotlib.pyplot as plt single_qubit_device.cfg_sched_repetitions(1) states = ManualParameter(name="States", unit="", label="") states.batched = True prepared_states = np.asarray([0, 1] * 500) readout_calibration_kwargs = { "qubit": "q0", "prepared_states": prepared_states, "acq_protocol": "ThresholdedAcquisition", } gettable = ScheduleGettable( single_qubit_device, schedule_function=readout_calibration_sched, schedule_kwargs=readout_calibration_kwargs, real_imag=True, batched=True, max_batch_size=200, ) measurement_control.settables(states) measurement_control.setpoints(prepared_states) measurement_control.gettables(gettable) dataset = measurement_control.run("Readout Calibration Verification") prepared_states = dataset.x0.values measured_states = dataset.y0.values ConfusionMatrixDisplay.from_predictions( prepared_states, measured_states, cmap="Blues", normalize=None ) plt.title("Confusion Matrix") plt.xlabel("Measured State") plt.ylabel("Prepared State") plt.show() ``` As expected, the threshold that we set did a good job of discriminating the qubit states (the discrimination is not perfect because the data points belonging to the two states slightly overlap). ## Conditional Reset The conditional reset is implemented in Quantify as a gate. When we have a single {{ Reset }} at the beginning of a schedule, we simply replace the {{ Reset }} gate with the {{ ConditionalReset }} gate, for example ```{code-block} python schedule = Schedule() #schedule.add(Reset("q0")) schedule.add(ConditionalReset("q0")) ... ``` In other cases, however, we need to pass extra arguments to {{ ConditionalReset }} that we illustrate below. ### Example: Modifying the T1 schedule In this example, we use the schedule function {{ t1_sched }} using the {{ ConditionalReset }} instead of the standard {{ Reset }}. When using multiple consecutive {{ ConditionalReset }} on the same qubit, we need to increment the `acq_index` for each one, similar to when adding multiple {{ Measure }} to the schedule. We also need to ensure that all acquisition protocols in the schedule are equal to `"ThresholdedAcquisition"`. ```{code-cell} ipython3 from quantify_scheduler.qblox.operations import ConditionalReset from quantify_scheduler.operations import X, Reset # original T1 schedule def t1_sched( times: np.ndarray, qubit: str, repetitions: int = 1, ) -> Schedule: schedule = Schedule("T1", repetitions) for i, tau in enumerate(times): schedule.add(Reset(qubit), label=f"Reset {i}") schedule.add(X(qubit), label=f"pi {i}") schedule.add( Measure(qubit, acq_index=i), ref_pt="start", rel_time=tau, label=f"Measurement {i}", ) return schedule # updated T1 schedule def t1_sched( times: np.ndarray, qubit: str, repetitions: int = 1, ) -> Schedule: schedule = Schedule("T1", repetitions) for i, tau in enumerate(times): schedule.add( ConditionalReset(qubit, acq_index=i, acq_channel=0), label=f"Reset {i}", ) schedule.add(X(qubit), label=f"pi {i}") schedule.add( Measure( qubit, acq_index=i, acq_protocol="ThresholdedAcquisition", acq_channel=1, ), ref_pt="start", rel_time=tau, label=f"Measurement {i}", ) return schedule ``` #### Running the T1 schedule using MeasurementControl The dataset returned by {{ MeasurementControl }} will in this case have four rows of data, which are: - `y0`: contains the data establishing whether a qubit was reset or not - `y1`: contains the actual (thresholded) measurement - `y2` and `y3`: filled with NaNs (currently {{ MeasurementControl }} expects {{ ScheduleGettable }} to return IQ values) Below we run {{ MeasurementControl }} again as before ```{code-cell} ipython3 --- tags: [remove-cell] --- ## generate dummy data for a fictitious T1 experiment import numpy as np tau = 1e-5 runs = 1024 times = np.array(list(np.linspace(start=1.6e-7, stop=4.976e-5, num=125))) num_samples = len(times) random_initial_states = np.mean( np.random.choice([0, 1], num_samples * runs).reshape(num_samples, runs), axis=1 ) def generate_random_numbers(times, tau, runs): times = np.array(times) probabilities = np.exp(-times / tau) random_results = np.random.rand(runs, len(times)) < probabilities average_results = random_results.mean(axis=0) return average_results average_T1_data = generate_random_numbers(times, tau, runs) cluster.delete_dummy_binned_acquisition_data(1) ic_cluster.instrument.set_dummy_binned_acquisition_data( slot_idx=1, sequencer=0, acq_index_name=f"0", data=[ DummyBinnedAcquisitionData(data=(0, 0), thres=x, avg_cnt=0) for x in random_initial_states ], ) ic_cluster.instrument.set_dummy_binned_acquisition_data( slot_idx=1, sequencer=0, acq_index_name=f"1", data=[ DummyBinnedAcquisitionData(data=(0, 0), thres=x, avg_cnt=0) for x in average_T1_data ], ) cluster.start_sequencer = lambda: start_dummy_cluster_armed_sequencers(ic_cluster) ``` ```{code-cell} ipython3 single_qubit_device.cfg_sched_repetitions(1024) # run and average 1024 times # Configure the settable time = ManualParameter("sample", label="Sample time", unit="s") time.batched = True times = np.array(list(np.linspace(start=1.6e-7, stop=4.976e-5, num=125))) # Configure the gettable gettable = ScheduleGettable( quantum_device=single_qubit_device, schedule_function=t1_sched, schedule_kwargs={"qubit": "q0", "times": times}, batched=True, num_channels=2, ) # Configure MeasurementControl measurement_control.settables(time) measurement_control.setpoints(times) measurement_control.gettables(gettable) dataset = measurement_control.run("t1") ``` ```{code-cell} ipython3 --- tags: [remove-cell] --- # we need to temporarily patch the dataset because I don't understand how to # pass average thresholds to DummyBinnedAcquisitionData such that # ScheduleGettable returns floats instead of ints dataset.y0.values = random_initial_states dataset.y1.values = average_T1_data ``` Above we also passed `num_channels=2` to the {{ ScheduleGettable }} so that it knows to expect measurements on the same qubit, but separate acquisition channels. We now plot the contents of this dataset: ```{code-cell} ipython3 plt.plot(dataset.x0, np.abs(dataset.y1)) plt.xlabel("time [s]") plt.ylabel('Probability of |1⟩ state') plt.title('T1 Relaxation Experiment') plt.show() ``` ```{note} Often, we can use an `Analysis` class on datasets to visualize the data and extract relevant parameters such as {{ T1Analysis }} ``` ### Note on Execution Order Parallel {{ ConditionalReset }} operations are not supported. For example, compiling the following schedule will raise a {{ RuntimeError }}: ```{code-block} python schedule = Schedule("") schedule.add(ConditionalReset("q0")) schedule.add(ConditionalReset("q1"), ref_pt="start") ``` and will have to be scheduled sequentially, ```{code-block} python schedule = Schedule("") schedule.add(ConditionalReset("q0")) schedule.add(ConditionalReset("q1")) ``` ## Closing Remarks You can find more technical information and explanations of the different limitations in our [reference guide](sec-qblox-conditional-playback).